
JOURNAL OF 
I GEOMETRYAND 

PHYSICS 
ELSEVIER Journal of Geometry and Physics 32 ( 1999) 189-2 10 

Twistor intergral representations of fundamental solutions 
of massless field equations 

Kazuhiko Aomoto a, Yoshinori Machida b,* 
a Department of Mathematics, School of Science, Nagoya University, Chikusa-ku, Nagoya 464-01, Japan 

b Numazu College of Technology, 3600 Ooka, Numazu-shi, Shizuoka 410, Japan 

Received 24 November 1998 

Abstract 

We consider the general dimensional (complex) Minkowski spaces and the extended twistor 
spaces. We show that the fundamental solutions of the complex wave or Laplace equations are 
explicitly represented by the integrals of some closed forms on the twistor spaces. The closed form 
is defined from labeled trees explained in graphs theory, and is written, as the cohomology class, 
by the linear combination of the logrithmic forms on some hyperplane configuration complement 
in some complex affine space. 0 1999 Elsevier Science B.V. All rights reserved. 
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0. Introduction 

Twistor theory constructed by Penrose is to discuss the relation between field equations on 
the four-dimensional (complex) space-time and geometric objects on the three-dimensional 
complex manifold called the twistor space. For example, solutions of equations of linear 
fields, such as the massless Klein-Gordon field with spin 0, the massless Dirac field with spin 
i, are represented by integral representations or cohomologies of functions on the twistor 
space. Solutions of self-dual Yang-Mills equations (i.e., instantons), which are equations 
of nonlinear gauge fields, are represented by holomorphic vector bundles on the twistor 
space. 
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There are various generalizations of the twistor theory. In this paper, we consider the gen- 
eral dimensional (complex) Minlowski spaces and the extended twistor spaces. We represent 
massless fields, i.e., solutions of the conformally invariant Klein-Gordon equations (i.e., the 
wave equations) and Dirac equations (i.e., the Weyl equations) by integral representations 
of functions on the twistor spaces. Especially, we show that the (complex) fundamental 
solutions, i.e., the propagator functions are explicitly represented by the integrals of some 
closed forms on the twistor spaces (Theorem 1 in Section 3 and Theorem 2 in Section 4). 

In the four-dimensional twistor theory by Penrose, there are the following double fibra- 
tions. Let T be the four-dimensional complex vector space, and let P(g P3 (C)) (of dimen- 
sion 3) be the set of all one-dimensional complex vector subspaces in T, M (r Gz,a(C)) 
(of dimension 4) the set of all two-dimensional complex vector subspaces in T and F (of di- 
mension 5) the set of all flags consisting of one-dimensional and two-dimensional complex 
subspaces in T. Then we have the following double fibrations: 

where I*, v are the naturalprojections andeach fiberofP, Mis P2(C), P'(C). This diagram 
is invariant under SL(4, C). On M, the natural (complex) conformal structure is defined in 
consideration of SL(4, C)/Zz g SO(6, C). The space P is called the twistor space of M. 

We consider the following (affine) local coordinate system in the big affine cell M’ c M: 

z = (zi’)i,j=,,2 E C2x2 ~ C4 ~ M’, 

and the projective coordinate system in the big cell P’ c P: 

[U’, U2> u1 I U2I(UI 3 ‘u2 # 0) E p’. 

Then the corresponding local coordinate system in the big cell F’ c F is represented by 
(z’j , [uk]). The link between M and P is given by the following twistor equations: 

J = 2 izjkuk (j = 1,2). 
k=l 

The (flat) complex metric associated with the diagram is represented as 

ds2 = &*’ dz22 - dz12 dz2’. 

The complex wave or Laplace equation compatible with this metric is 

In physics, the equation above represents the motion of equation of a free scalar field 4 with 
spin 0 and mass 0, i.e., the massless Klein-Gordon equation. 
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The (complex) fundamental solution !P to this equation is 

1 
P(z) = z11z22 _ z12z21. 

We take on P a rational function 

1 
f([u’, Vj]) = -. ulz2 

Then the fundamental solution ly has a twistor integral representation by f: 

where y is a l-cycle around the point -z12/z1’ in the fiber u-‘(z) 2 P'(C) over z E M’. 
The conclusion follows from the residue theorem. In detail, see [14,13]. The purpose of 
our paper is to extend this fact to general dimensional twistor theory. When we restrict 
the argument above to S4 c M, Atiyah ([ 1,10,14]) associated the Green function for the 
Laplacian at x E S4 with the Serre class of /1.u-t (x) C P. 

This paper is organized as follows. 
In Section 1, we describe the twistor integral representations of the solutions of the 

complex wave or Laplace equation on M' . 
Both Sections 3 and 4 are the main parts of this paper. 
In Section 3, we study the twistor integral representation of the fundamental solution of 

this equation in the even dimensional cases. We consider labeleled trees explained in graph 
theory and define the different form on P’ associated with each labeled tree. Next we define 
the differential form o by summing up all the differential forms associated with each labeled 
tree. Then we show that w is closed. Integrating w on an appropriate cycle in the fiber over 
each point of M’, we obtain the twistor integral representation of the fundamental solution 
of this equation. 

In Section 4, we treat the odd dimentional cases. We obtain the twistor integral represen- 
tation of the fundamental solution of this equation by a reduction from the even dimensional 
cases. 

1. Twistor space of n-dimensional space-time 

1. Let M’ be the n-dimensional flat space-time, i.e., the n-dimensional Minkowski space 
R;. Let M’ be the n-dimensional flat complex space-time which complexifies both M’ 
and the metric, i.e., the n-dimensional complex Minkowski space Cn. 

We suppose until Section 4 that the dimensions of M' and M’ are even dimensional, say 
n = 2m. 

We take the coordinate system (zi, zm+i) = (~1, . . . , zm, zm+l, . . . , ~2~) on M’ such 
that the complex metric ds2 is represented in the form 
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In this paper we discuss our problems in terms of the local or affine chart. This is sufficient 
to solve physical problems. We do not treat either global or cohomological problems as is 
discussed in [3]. 

2. Let P’ be the set of all maximal isotropic subspaces in M’ which do not necessarily 
include the origin, i.e., the set of all totally null afline m-places in M’. Here by a totally 
null plane we mean a plane with the property that any two vectors tangent to the plane are 
orthogonal. 

We call P’ the twistor space of M' . See [2,12]. 
The following proposition is easy to see (cf. [5]). 

Proposition 1. A generic element belonging to P’, i.e., a generic totally null a&e m-plane 
in M’ is represented by the following twistor equations: 

M 
ui = Zi + c qjzm+j (i = 1, . . . , m), 

j=l 

where ui, VijeC, vij = -Vji. 

The twistor equations play an important role in linking M’ to P’. The equations are 
characterized by the following holonomic system of linear partial differential equations of 
first order: 

a@; 
- = 0 (j # i), 

a@j a#j 

azj 
a@i a@j 

azj=c* 

- = 0 (i < j), 
a@i 

az,+j + az,+i 
- = 0 (i, j = 1, . . . , m), 
az m+i 

**i =ui - (zi +$uijZm+j) (i, l,...,m), 

We remark that we can take (ni , Vij) as generic parameters of P’. Therefore, the dimen- 
sion of P’ is m(m + 1)/2. 

Let F’ be the incidence relation between M’ and P’, i.e., 

F’ = ((z, u) E M’ x P’lz E u}. 

The dimension of F’ is m(m -t- 3)/2. 
3. Let M be the conformal compactification of M’ . We have the corresponding conformal 

compactifications P and F such that P’ c P and F’ c F, respectively. 
A point in P is defined as a totally null m-plane (Z P”(C)) which is called a-plane in 

M according to Penrose’s terminology. On the other hand, a point in M is regarded as the 
set (S P’, dimP’ = m(m - 1)/2) of all totally null m-planes called cr-planes through the 
point. 
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These manifolds are represented as homogeneous spaces in the following way. 
The conformal compactification of M’ = R; is the quotient space of SOo(n, 2) by the 

minimal parabolic subgroup 

A4 2 Sn-’ x z2S1 2 SOo(n, 2)/SOo(n - 1, 1) . R+ . R”, 

where SOu(n, 2) is the identity connected component of O(n,2). 
The conformal compactification of the complexified M’ = C” is 

M G en(C) g SO(n +2)/SO(2) x SO(n) g SO(n + 2, C)/U, 

where Qn (C) is a complex quadric and SO(n + 2, C)/ U is a flag manifold. Remark that 

M* Z SO&, 2)/SO(2) x SO(n) (c M’) 

is a symmetric bounded of type IV. For P’, 

P m+l := P 2 SO(2m + 2)/U(m + 1) Z SO(n + 2, C)/Q. 

Remark that 

P* E SO*(2m + 2)/U(m + 1) (C P’) 

is a symmetric bounded domain of type II. 
Moreover, we have 

P’ = PC,) Z S0(2m)/U(m). 

The set P of all totally null m-planes through the origin has two connected components 
PC+) and PC_,. Here PC+) is the set P’ = PC,) of all a-planes and PC_, is the set of all 
/3-planes. The space P is characterized by each of the following which is equivalent to each 
other. 

(1) The space of all m-dimensional totally null subspaces (through the origin) in C2m. 
(2) The space of all projective pure spinors on C*” . 
(3) The space of all orthogonal complex structures (with respect to a positive definite 

inner product) on R2m. 
See [7,9] in detail. 
4. What have been mentioned above can be summarized in the following diagram: 

C” 3 (zm+i) - (ui 3 Vij; Zm+i) = (Zi, Zm+i; Uij E F’ t- (Uij) E P’ 
PJ Lv 

P’ 3 (Uj, Uij) (Zi, Zm+i) E M’ 

Jf 1 k T-l 

P’ 3 (Vij) (Zm+i) E C” 

Here the mapping 1 means the n(= 2m)-dimensional family of sections with parameters 
(zi, zm+i). The mapping k means the (m(m -t 1)/2)-dimensional family of sections with 
parameters (Ui, Vij). 
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2. Tkvistor integral representations of solutions of massless field equations 

1. In the n-dimensional space-time M’, the equation of motion of a free scalar field 4 
with spin 0 and mass 0, i.e., massless Klein-Gordon equation is 

?????? ? a24 co, 
i=, aziaz,+i 

This is a complex wave or Laplace equation. On the other hand, a free spinor field + with 
spin i and mass 0 is represented by a massless Dirac equation (Weyl equation) D@ = 0, 
see [3]. However, we do not discuss the latter. 

As is well known, a field 4 has a plane wave decomposition, in other words, a Fourier 
integral representation. This integral is integrated over the momentum space of the space- 
time. But each plane wave, which is represented as an exponential function, does not tend 
to 0 at the infinity. 

We want to construct a field 4 in the n-dimensional space-time M’ as an integral over 
the twistor space P’, i.e., as a twistor integral representation. Namely, we want to extend 
Penrose’s twistor integral representation on the four-dimensional space-time to general 
dimensions. 

2. We have the following proposition. 

Proposition 2. We define the function C#I (z) by putting 

m 

Zi + C vijZm+j, vij A’ dvij, 
j=l 

where z = (Zi, Zm+i), ui + cyz1 UijZm+j, Ak is u k-chain in Pl = W-‘(Z), /\k duij is 
an exterior product k-form by any of dnij and f = f (ui , vij) denotes a suitable analytic 
function on P’ such that f (zi + ~~!_, vijZm+j, vij) is holomorphic in Ak. 

Then 4~ satis$es 

O@ = 2 a24 =(). 
i=I azi &+i 

Remark that a k-form f /\k duij on PL can be regarded as an element of @T K 8 A’ T * (P’), 
where Qz is a cross-section (a graph) of the bundle P’ + P’ defined by Ui = zi + 

Cy=t VijZm+j* and K is the field of meromorphic functions. 

An elementary state is defined as f = u:’ u;’ s . . uk (Ai E C). For an analytic function 
g = g (Vi j) on P’, an integral transformation 

k 

g++@g= s g(Vij)Ut’uF . . . ok /\k dvij 

A 
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is defined, if the integral exists. Since #g satisfies 04s = EYE, (a2&/aziaz,+i) = 0, it is 
a Poisson transformation too. 

3. Differential forms associated with labeled trees and propagator functions 

1. In this section we shall consider the twistor integral representation of the causal Green 
function (Feynman’s propagator) of a massless Klein-Gordon equation in the n-dimensional 
space-time M' . This propagator function is the complex fundamental solution of a complex 
wave or Laplace equation. We show that this is given by the integration of (m - I)-forms 
associated with labeled trees. The real propagator function is obtained by the limit to M’ 
from imagimary regions of the difference between the retarded and the advanced Green 
functions. In this sense, it is a Sato’s hyperfunction. 

Let T be a graph with m vertices which has neither cycles nor loops, i.e., a tree with the 
following properties: 
(1) V(T)thesetofverticesofTarelabeledbythemnumbers{1,2,...,m}. 
(2) T is directed starting from the root 1. Each edge (joined by i, j E V(T)) is oriented as 

j + i . In this case, we call j the predecessor of i. 
(3) The edges are ordered as 

(P(2)2) < (p(3)3) < ... < (p(m)m), (ij) = -(ji), 

where p(i) is the predecessor of i . 
According to Cayley’s theorem in graph theory, the number of labeled trees with m 

vertices up to isomorphism is mm-2. See [6]. 
We let an edge (ij) and a vertex k correspond to duij and uk, respectively. 
We define the (m - l)-form WT associated with T as follows: 

oT = @I - I)!@2 - 2)! . * . (& - I)! dv,,(zp A dup(3)3 A .. . A dupcmjm 

(j(4 +&+...+d,) - l)! . 
dl d2 d > 

cl, u2 . ..u. 

where di is the degree of i, i.e., the number of edges incident with i. Furthermore, we define 
an (m - 1)-form w as follows: 

where 7, is the set of all labeled trees with m vertices up to isomorphism. 
We give a few examples of WT, w in low dimensions. 
In the case where n = 4, i.e., m = 2, the number of 72 is 22 - 2 = 1, 

d.Uc 
WT = - for T : / 2 

UlU2 
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In the case where n = 6, i.e., m = 3, the number of T3 is 33-2 = 3, 

dw A dun 
WT, = 

+2u3 
for TI : 

dw2 A dv23 
wT2 = 

w&3 
for T2 : 

dv32 A dun 
WT3 = 

w424 
for T3 : 

< 

2 

/ 3 

@? 

2 

/ 3 

@xl 

2 

/ 3 
In the case where n = 8, i.e., m = 4, the number of 74 is 44-2 = 16, for instance, 

1 dv12 A dvz A dv34 for T 
WT, = - ’ 

. 
2 up;+4 1. 7 

/ 2 3 4 

1 dv12 A dv23 A dv24 WT2 = - * 
2 w:u3u4 

for T2 : 

In the case where n = 10, i.e., m = 5, the number of 75 is 55-2 = 125, for instance, 

1 dv12 A dvz A dv34 A dv45 
Ci,T, = - . 

6 u,u;u~u~u~ 
for T 1: v 

/234-s 

1 dv12 A dv23 A dv34 A dtg5 
UT3 = -. 

3 u,u;u~u~u~ 
forT2: TT- ,” 
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dv12 A dv23 A dv24 A dvz5 
WTj = 

W~~3~4~5 
for T3 : 4 

2. We show that the (m - l)-form w is a closed form on the fiber Pk = u-‘(z) over 
z E M’ with respect to the bundle F’ c- M’, or on the image @,(P’) of a cross-section 
0, with respect to the bundle P’ - P’. 

Proposition 3. We have 

do = 0 on Pi (or Qz (P’)). 

Proof. We remark that, to the (m - 1)-form associated with a labeled tree (here, we assume 
that the (m - 1)-form does not include the part of dvij), the left operation of the exterior 
product by a l-form dvij corresponds to make a cycle by adding the edge from a vertex i 
to a vertex j for the labeled tree. 

From now on, we simply write the l-form duij by (ij). 
(1) We consider the following two labeled trees T, T’ (Figs. 1 and 2). 
Here k # 1, and p(k) = i for T, p(k) = j for T’. Moreover, as a graph with labeled 

vertices, the graph made by adding the edge from a vertex j to a vertex k for T and the 
graph made by adding the edge from a vertex i to a vertex k for T’ are the same. 

The (m - l)-forms WT, w/T associated with T, T’ are as follows: 

(dl - l)! . . * (dj - l)! * 1 *(d, - l)! 
tir = 

x (p(2)2) A . . . A (ik) A . . . A (p(m)m)) 
4 . ..$ dj ...ulfim 

, 
2.41 I “‘Uj 

‘p- --- -- _ / 
Fig. 1. 
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F -----_ / 3 .’ /c ‘Ai \ \ 

k Y . 

Fig. 2. 

w; = Cdl - l)!...(d; -2)!...(d, - l)! 

(;(dl + e.. + (di - 1) + * . * + (dj + 1) + * * . + dm) - l)! 

x ww) A . * * A (jk) A.. . A (p(m)m) 
4 

Ul 
di - 1 dj+l 

““i **.” 
dm 

J 
“‘U, 

Taking the exterior derivations of WT , WT’, we have 

dWT = (dl - l)!..*(di - l)!**.(dj - l)(dm - l)!d(,_d, -di 
. . ‘5 

-dj 

(;(d, +...+d,) - l)! 1 . . .Uj . . .u,td”q 

A.. . A (p(m)m) 
(dl - l)!..(di - l)!..(dj - l)(dm - l)!UTd, -di = 

(;(dl +. . . + d,) - l)! ““i 
. . .$. , .u;dnld(ujdj) 

A . . . A (p(m)m) + {- . .} ({- . .} is the term including differentials 

except that of ujdj) 

(dl - l)!‘.*(di - l)!*‘.(dj - l)(dm - l)! = - 
(;(dl +. . . + dm) - l)! 

X 
zk+m(jk) A (p(W) A . . .;,FF) A . . . A (p(m)m) 

4 . . .& 
+ I* . .I, 

Ul I 
...ujJ ...u$ 

du 
T’ 

= (dl - l)!***(di -2)!..‘dj!...(dm - l)! 

&4 + . ..+d.)- l)! 

-4 x d(q 
-di+l 

““i . . . uJ:“j-’ . . . uid”‘) ,, . . . ,, (p(m)m) 

= (dl - l)!...(di -2)!...dj!...(dm - I)! 

(;(dl + . . .+d,)-l)! 

-d, i 
Ul 

-dJ-I . . . v.. .uj . . . U,d”‘d(ui ++I) A.. . A (p(m)m) 

+ {. . -} ([a . .) is the term including differentials except that of u;“+‘) 

(dl - l)!**.(di - l)!..*dj*..(dm - l)! = - 
(;(dl + . . e+d,)- l)! 
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Fig. 3. 

Fig. 4. 

X 
Zk+m(ik) A (p(2)2) A . . . A (jk) A . . . A (p(m)m) 

dl u, . , & dj+l & 
+ I* . .I. 

I “‘Uj “‘U* 

Here, each third equality holds from the twistor equations. The coefficient of the first 
term of dwr is equal to that of the first term of dWr(, and taking into consideration the 
equality 

(jk) A (p(2)2) A . . . A (ik) A . . . A (p(m)m) 

= -(ik) A (p(2)2) A . . . A (jk) A . . f A (p(m)m), 

it follows that the first term of dart added to that of dmr makes zero. 
(2) We consider the following two labeled trees T, T’ (Figs. 3 and 4). Here i < j, 

and p(i) = 1 for T, p(j) = 1 for T’. Moreover, as a graph with labeled vertices (and 
nondirected edges), the graph made by adding the edge from a vertex j to a vertex 1 for T 
and the graph made by adding the edge from i to a vertex 1 for T’ are the same, and the 
path with the length r, 1 + i -+ a + . . . -+ b + j + 1, is a cycle. 

The m - l-forms COT, 0; associated with T, T’ are as follows: 

UT = A(p(2)2) A + e. A (Ii) A . . . A (ia) A . . . A (p(b)b) 

A. . . A (bj) A . . . A (p(m)m), 

0~’ = A’(p(2)2) A . . . A (ai) A . . . A (p(a)a) A . . . A (jb) 

A.. . A (lj) A.. . A (p(m)m), 
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where, A and A’ are the coefficients of wT andwrf , respectively, and p(j) = b for T, p(i) = 
a for T’. Taking the exterior derivatives of WT and WT~, we have 

dwr = B(j1) A (p(2)2) A . e . A (li) A . e . A (bj) A . . . A (p(m)m) -I- {. . .), 

dwrl = B’(i1) A (p(2)2) A.. . A (ai) A.. . A (1 j) A.. . A (p(m)m) + (es +}. 

Here the calculation is performed in the same way as (1). It follows that B = B’ holds. We 
show that the first term of dwTt added to that of dwT makes zero. 

If we change the root 1 to a new root i, then the direction of an only edge (1 i) for T is 
changed and the directions of the only edges of a path P : 1 + j + b + . . . +- a -+ i 
for T’ are changed. We rewrite WT and 0~’ as if the root is i. As (Ii) = -(i 1) for WT, 

UT = -A(p(2)2) A . . . A (il) A . . . A (ia) A . . . A (p(b)b) 

A. e. A (bj) A -. . A (p(m)m). 

As (ai) = -(iu), . . . , @(~)a) = -(up(u)), . . . , (jb) = -(bj), . . . , (lj) = -(jl) for 
WT', 

wT' = (-l)‘-‘A’(p(2)2) A . . . A (i~) A . . . A (q(U)> A s . . A (bj) 

A.-. A (jl) A * * * A (p(m)m). 

We let a wedge (j 1) head the wedges of P: (iu), . . . , (up(a)), . . . , (bj), . . . , (j 1). That is, 
(jl), (ia), . . . , (a~@)>, . . . , (bj), . . . . This is made by I permutations. Rearranging WT’, 
we have 

wT’ = A’(p(2)2) A + . . A (j 1) A . . . A (iu) A . . . A (up(u)) 

A.. . A (bj) A . . . A (p(m)m). 

The part (i 1) of Or and the part (j 1) of 0~’ are the same places by counting from the parts 
(p(2)2). The other parts of OT and WT’ are the same. Therefore, since 

dwT = -B(ji) A (p(2)2) A . . . A (i 1) A . . . A (p(m)m) + {. . a}, 

dWTf = -B(il) A (p(2)2) A ~9. A (jl) A... A (p(m)m) + I-.-}, 

it follows that the first term of duT[ added to that of dwT makes zero. 
Let a labeled tree T be given. Then a graph with a cycle by adding an edge incident with 

a vertex k to T cancels out the graph with a cycle by adding an edge incident with the same 
vertex k to another lebeled tree T’ which is unique determined. Summing up the forms 
corresponding to all labeled trees, we conclude that dw = 0. 13 

From Proposition 3, the (m - 1)-form w determines a cohomology class [w] of degree 
(m - 1) on a hyperplane configuration complement Pi - Uy=“=, Hi. Here Hi is a hyperplane 
in Pi defined by a linear equation Ui = 0. Remark that Pi 2 Cm(m-1)/2. Hence we have 
the following. 

Corollary 1. The cZass [o] belongs to H”-’ (Pi - tJ~=~ Hi, C). 
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In 4 in this section, we will represent the class [w] as linear combination of logarithmic 
fOlTflS in Pi - Uy=“=, Hi. 

3. We show that the propagator function (EYE1 ZiZm+i)-mfl on M’ is given by the 
integration of the (m - 1)-form o over an appropriate (m - 1)-cycle A in PL. 

Theorem 1. We have 

s 
A 

-HI+1 

, 

where A = Cy=, ci Ai, c’!=, ci = 1 and Ai is an (m - 1)-cycle transversal to nj+i Hj 

in Pi. 

Proof. We have 

We show that 

s 
Ai 

-m+l 

, 

for each i. Take A = A,. It is an (m - 1)-cycle transversal to a subspace defined by 
ui = . . * = u,_, = 0 and we take it so that it may avoid a hypersurface defined by urn = 0. 
Furthermore, we restrict the (m - I)-cycle A, to a homologous one on a subspace defined 
by vij = 0 (i, j # m). Then, by residue theorem (cf. [4]), 

s 
u = (2JG)“_’ Resul=...=u,-~=o~lvij=o(i,j#m) 

Al?! 

= (2r~i)~- Res 
dv,2 A du,,,s A . + * A dv,,_l A dun,, 

UlU2” m-l 
‘kn-lh7l 

= (27ri)m-’ Res 
dun,, A dvz,,, A.. . A dvmmlm 

UlU2 * ’ m-l 
’ urn-lum 

= (2ni)m-1 
1 

X 

Z~~1(Zm+(Z1/Z2m)Zm+l + (22/Z2m)Zm+2+’ “+(Zm-1/Z2m)Z2m-1)m-1 

= (2?ri)m-’ 
1 

(ZlZm+l + Z2Zm+2 + ’ ’ * + ZmZ2m)m-1 ’ 

Here, the second equality holds from duij = 0 (i, j # m). It means that the integration 
of the (m - 1)-form o associated to all m m-2 labeled trees is reduced to the integration of 
wr associated to the following labeled tree T (Fig. 5). 
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Fig. 5. 

For the fourth equality, it follows from 

a&l, u2,. . . , &n-l) m-l 

m rntV2rn,*..9 h-h) 
= Z2m 

and 

Zi 
Vim = -_Vmi = --. 

Z2m 

Similarly we obtain it for A = Ai (i # m). 0 

4. Let X be a hyperplane configuration complement in C”, i.e., 

X=C”-UHj, 

where Hj is a hyperplane in Cn defined by a linear equation fj = 0. Then, by Brieskorn 
and others [ 111, the holomorphic de Rham cohomology H* (X, C) is isomorphic to Orlik- 
Solomon algebra: 

H*(X, C) z kc C(dlogfi, A*.‘A dlogfi,). 
p=Oil -c...tip 

Here logarithmic forms {d log fj} are the generator of the algebra. 
In our case, it follows that 

and the basis is 

(dlogul A..&. .A dlogu,li = l,...,m). 

Proposition 4. As the cohomology class, the (m - l)-form o is written by the following 
linear combination of the above basis: 
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WW (~zi;m+$-m+’ (~~-~~~-~~~OgU, *...c...* ~~OgU.) 

in Hm-‘(P; - uy=“=, Hj, C). 

203 

Proof. Put 
M 

W= c uj(-l)j-‘dlogu, A...:... A dlogu,. 
j=1 

Then we have 

s w = aj (274=1 

4 

for j. Since 

-??+I s m 

w = (2ni)“_’ c ZiZm+i 

*J 
( 1; i=l 

it follows that 

m -m+l 

Uj = ( 1. c ZiZm+i 

i=l 

Therefore we have proved the claim. 0 

4. Odd dimensional cases 

1. In this section we shall study twistor theory of the odd dimensional flat space-times. 
By the reduction to dimension n + 1 (= 2m) (the method of Hadamard’s descent), we 
consider the same argument as from Section 1 to Section 3. 

We suppose that the dimension of M’ are odd dimensional, say n = 2m - 1. 
We take the coordinate system (zi, Zm+i, z) = (~1,. . . , ~~-1, zm+l, . . . , ~~-1, z) on 

M’ such that the complex metric ds2 is represented in the form 

m-l 

dz2 + C dzi dZm+i 
i=I 

Let P’ be the set of all (degenerate) null m-planes in M’ including a (maximal) totally null 
(m - 1)-plane. In odd dimensional cases we call P’ the twistor space of M' . 

The twistor equations are obtained by the reduction to dimension it + 1 (= 2m). In (n + 1) 
(= 2m)-dimensional case, P’ is the set of all (maximal) totally null m-planes in M’. The 
twistor equations are 
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m 

Ui = Zi + c Vijzm+j, Vij = -Vji, (i = 1, . . ..m). 
j=l 

In it (= 2m - 1)-dimensional case, we divide the above equations into the following two 
parts: 

m-l 

Ui =Zi + c VijZm+j + Vimz2m (i = 1,. . . , m - l), 
j=l 

m-l 

Um=Zm+ c Vmjtm+j, 
j=l 

and then, we define the following equations: 

Wi = uj + vimum (i = 1, . . . , m - 1) 
m-l 

=Zi + Vim(Zm +Z2m) + C(Vij - VimVjm)Zm+j. 

j=l 

Putting 

2Z=Zm+Z2mt 

we get the following proposition. 

Proposition 5. A generic element belonging to P’ is represented by the following twistor 
equations: 

m-l 

Wi=Zi+2VimZ+C(Vij_VimVjm)Zm+j (i=l,...,m-l), 

where w. v.. E C v.. = Lyl. 
I, “, 7 I, J” 

We remark that the twistor equations are linear with respect to zi , Zm+i , z, but on the other 
hand they are quadratic with respect to uij unlike even dimensional cases. Compared with 
Penrose’s four-dimensional twistor theory, Hitchin’s three-dimensional minitwistor theory 
is so. See [8]. 

What have been mentioned above can be summarized in the following diagram: 

Cm 3 (zm+i, Z> - (Wi, Vij; zm+i, Z) = (zip zm+i, Z; Vij) E F’ + (vij) E P’ 
PJ Lv 

P’ 3 (Wj, Vij) (zi, zm+i, Z> E M’ 

4 -1 

P’ 3 (Vij) (Zm+i, Z> E Cm 

We remark that P’ in n (= 2m - 1)-dimensional case is the same P’ as in (n + 1) 
(= 2m)dimensional case. 
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2. In the n (= 2m - I)-dimensional space-time M’, the equation of motion of a free 
scalar field r$ with spin 0 and mass 0, i.e., a massless Klein-Gordon equation is 

El@= t-$+me ( a2 
i=, aZiaZ,+i 

1 

fp = 0. 

The field C#J has a twistor integral representation similar to even-dimensional cases. As in 
Proposition 2 in Section 2, we have the following proposition. 

Proposition 6. Let f = f (wi , vii) be a suitable analyticfunction on PI. Put 

m-1 

Zi + 2UimZ + c (Vij - VimVjm)Zm+j, Vij A’ dv,. ‘J ’ 
j=l 

where z = (zi, zm+i , z), wi = zi + 2uimZ + xy=Z’ (vij - Vim uj,)Zm+j, Ak is a k-chain in 

Pi = U-I (z), A’ duij is a k-farm. 
Then 4 satis$es 

?????( $2 a2 

i=, azi aZm+i 
1 

I$ = 0. 

3. We shall consider the twistor integral representation of the propagator function of a 
massless Klein-Gordon equation in the n (= 2m - 1)-dimensional space-time M’ from 
the same point of view as in even dimensional space-times. 

We take a labeled tree T with m vertices and furthermore the set ‘&m of all mrne2 labeled 
trees with m vertices mentioned in the (n + 1) (= 2m)-dimensional case in Section 3. 

In the (n + 1) (= 2m)dimensional case, we defined the (m - 1)-form wr associated 
with T as follows: 

wT = (4 - I)! . . . (dm - l)! dvp(2)2 A . . . A dvpCmjm 

(#,+*..+d,)-l)! .y...$$ . 

In this n (= 2m - I)-dimensional case, we define the (m - 1)-form &- associated with T 
as follows: 

or = c 
(& - l)!(dr + ei - l)! . . . (&_I + em_1 - l)! 

el+...+em_l=dm-l ($(dl + * * e+d,)-l)!ei!...e,_t! 

v;t, . . . vF:;m dvp(ijl 1 A . . . A dvp(m-l)m-l 

dl+el . . . W4-l+em-l 
, 

Wl m-1 

where we change a root of T to vertex m. Remark that the number of the term of C is 
(m+d,-3)! 

m-lHd,n-1 = dm_l!~m_2)!. 

Furthermore, we define an (m - 1)-form 0 as follows: 

8= c &-. 
Tel, 
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We show that the (m - 1)-form 0 is closed on the fiber P,’ = Y-‘(Z) over z E M’ with 
respect to the bundle F’ + M’, or on the image az(P’) of a cross-section Qz with respect 
to the bundle P’ + P’. 

Proposition 7. We have 

d0 = 0 on P,’ (or @,(P’>). 

Proof. 
Step 1. By Theorem 1 in (n + 1) (= 2m)-dimensional case in Section 3 (we use the same 

notations), 

Put 

22 = Zm + z2m> 2w = Zm -22m3 

then 

ZmZZm = z2 - w2, a2 ~~(_!I$~) 
ah az2m 

hold. Put 

m 

c 
a2 m-l a2 

El= 
i=, aziazm+i = i=l aziazm+i c 

+~$-~$+?L, 

where 0’ is 0 of dimension II (= 2m - 1) in this section. Take a neighborhood U C M’ 
of z locally. In consideration of a product set A x U for A C u-’ (z), we have 

+++~~-~~~~~o. 

A A A A 

Next, we integrate it over an appropriate cycle y on a w plane: 

We show that the second term is equal to 0. Then, it follows that the first term is equal to 0. 
By the way, 

d 
a2 

= dw A azo2w, 
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where d,., is the exterior derivative with respect to variables uij, w, and d, w = 0 holds. 
Therefore, for the cycle r = r(v, w) made by y and A, 

/-(/-$-) dw=-[dwA$w=-(du,,(kti)=O. 

Y s 

Now, let us put 

then it follows that 

1 
d,Q=- d,wdw=O. 

27ci s 
Y 

For an appropriate cycle A’ homologous to A, 

J(l ) 

??‘w dw = 0. 

A A’ Y Y A’ 

This 8 is nothing but what we desire. In Step 2, we explicitly calculate 8. 
Step 2. We solve u, = 0 and take the residue. 
From 

m-l m-l 

um = Zm + C VmjZm+j = (Z + W) + C VmjZm+j = 0, 
j=l j=l 

it follows that 

m-l 
w = wug = -2 - c VmjZm+j. 

j=l 

Let y be a cycle round the point wo on a w plane. Recall that 

oT = (4 - I>! . ..(d. -l)! _d, -6-l *-d”, 

(;(d, +...+dm)_$l “‘um-1 m 
dVp(2)2 A * * . A dvp(m)m. 

Then 

e,-=& s WT dw 

Y 

= &2ni ReswO (wT dw) 

= (dl - l)!...(d, - l)! 1 

(;(d, +. . . + dm) - l)! (dm - I)! 
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From 

m-l 

ui = zi + c UijZmfj + UimZ2m (i = 1,. . .3 m - 1) 
j=l 

m-l 

=Zi C UijZm+j + %m(Z - W>, 

j=l 

according to a long calculation by Leibniz’ rule, etc., and the consequence that, as w + wo, 

m-l 

Ui + Zi + c QjZm+j + vim 

j=l 

m-l 

= Zi + 2VimZ + c (Vij - UimUjm)Zm+j = UJi, 

j=l 

we obtain 

eT = c 
(d, - l)!(dl + et - l)! .. . (c&-l + em-1 - I)! 

el+...+e,_l=d,_l 
&dl + *. .+d,) - l)!et!...e,_t! 

x VT:, * . . urn-lm ‘,+ du,(t)t A. -. A dup(m_l~m_l 

dl+el &-Ifem- 
WI . . * W,_l 

??

4. We show that the propagator function (z2 + Cy=;’ ~iz,,,+t)-~+~/~ on M’ is given by 
the integration of the (m - 1)-from 8 over an appropriate (m - 1)-cycle of PL. 

Theorem 2. We have 

1 c 

m-l 
-m-+3/2 

e=c Z2+CZ1Zm+i ! 
A i=l i 

where A is an (m - 1)-cycle transversal to ni Gi (Gi : wi = 0) in PL, and c is some 
constant. 

Proof. We restrict the (m - I)-cycle A to a homologous one on a subspace defined by 
Uij = 0 (i, j # 1). For 

Wi = 24i + UimUm = 0 (i = 2, . . . , m - l), 

from Vim = 0, it follows that 

Z2 Zm-I 
u12 = - 

Zm+l ’ ’ ’ ’ ’ 
Ulm-1 = - 

Zmfl ’ 
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and for WI = 0, that is to say, 

209 

m-l 

Wl =Zl + 2vlmZ + C(vlj - Ulmujm)Zm+j 

j=l 

m-l 

=Zl + 2vlmZ + C uijZm+j - u:mZm+l 

j=l 

=z1 + 
22 

-Zm+2 + . . . + 
Zm-I 

Zm+1 
-Z2m-1 + 2ZVlm - Zm+l v:, = 0, 
Zrnfl 

we regard it as an algebraic equation of degree 2 with respect to ~1~. Let a and /I be its 
solutions: -zm+l (~1~ - cz)(ulm - /?> = 0. Since the discriminant D is 

D=z2+ 
ZlZm+l + . . . + Zm-lZ2m-I 

Zm+l 
Zrnfl 

=Z2 +ZlZm+l +“‘+Zm-1Z2m-1, 

if follows that 

Ulm = (11, B= -J-&z + 6). 
m 

By residue theorem, 

s 8 = (27ri)m-1 Res,,=...=w,,_,=oelvj,=O (i,j#l) 

A 

= (2ni)m-1 Res 
dv12 A . . . A dvl,_l A dvlm 

m-l 
Wl w2.. . Wm-1 

= (2ni)m-1 
(-1>“-1 

2 
;,: 

= (2ni)m-’ 
(-l)m-1 

s 

dvlm 
m-2 

zm+l 6 
(-Zm+l)m-l (Ulm - Cd)m-1(2, Im - B>“-’ 

= (27ri)“-l 
(-l)“_’ 1 1 

z;,; (-‘)“-lZ;,; (a! - j3)2”-3 

x (m - 1)m 3 . . (2m - 4>(-1>“-2 

(m - 2)! 
1 

= (2ni)m-’ - 
1 

z;;;3 (2fi/Zm+, )2m-3 

1 
= (2ri)m-’ - Dm_3,2 (-1)+22-2m+3 

1 

= ’ (Z2 + Cy=y’ ZiZm+i)m-3/2 ’ 
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where 6 is a cycle round the point ulm = a on a vim plane and 

c = (2ni)m-1 (__ l)=2pm+3 2m-4 ( ) m-2 ’ 

The third follows from 

acw2,. . . I &L-i> 

acv12,. . .* wn-1) 
= (-1)9;$ 

and the sixth equality follows from the relation cx - /I = 2fi/zrn+l. ??
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